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Abstract—A spatially discretized non-linear rate problem for a time-independent plastic solid is
examined with particular reference to bifurcation. Constitutive non-linearity in a general form
encompassing the yield-surface vertex effect is considered under the restriction that the tangent
stiffness matrix for the whole system is symmetric. Theorems concerming existence, uniquencss and
stability of solutions are presented. As an outcome of the theoretical analysis, a computational
method is proposed for crossing bifurcation points with automatic rejection of an unstable post-
bifurcation branch. An illustrative example of plane strain tension is calculated by using the finite
clement method.

L. INTRODUCTION

In this paper, spatially discretized non-lincar rate problems are discussed which accompany
numerical step-by-step analysis ol large quasi-static deformations ol time-independent
inclastic solids. In particular, attention is focused on the possibility that the continuation
of the deformation is not unique, i.c. there is a bifurcation of a deformation path. A familiar
method of numerical initiation of a secondary post-bifurcation path follows from Hill's
bifurcation theory [cf. Hill (1959, 1961)]. The instant of primary bifurcation is to be found
as a point on the fundamental deformation path at which the tangent stiffness matrix ceases
to be positive definite and becomes singular. The respective etgenvector is computed and
added to the fundamental solution in velocities with a multiplier such that the resulting
strain rates do not fall outside the constitutive domain of applicability of the stiffness
moduli corresponding to the fundamental solution. The actual value of the multiplier results
from a higher-order condition of continuing equilibrium which usually reduces to the
requirement that at one or more material elements the strain rate must lic on the boundary of
the domain of fundamental moduli ; for more details see ¢.g. Needleman (1972), Hutchinson
(1973) and Needleman and Tvergaard (1982). However, that approach is not very con-
venient in practical computations since it requires implementation of numerical technigues
other than those used along a regular path without bifurcations ; there may also be diflicultics
raised by an ill-conditioned tangent stiffness matrix in a vicinity of the bifurcation point. A
more fundamental difficulty is met if the seccondary branch emanates at the primary bifur-
cation point “tangentially™ to the fundamental path so that the above approach cannot be
dircectly applied ; this is a rule when the constitutive rate equations are thoroughly non-
lincar (Klushnikov, 1980; Necdleman and Tvergaard, 1982 Triantafyllidis, 1983) but is
also possible in classical elastic~plastic solids (Petryk and Thermann, 1983). Morcover, the
above approach fails when the bifurcation is induced by a discontinuous drop of the
incremental stiffness of the material so that the tangent stiffness matrix along the fun-
damental path becomes indefinite without being singular.

A common method used to pass over thosc difficultics is to analyze numerically a
system with imperfections such that the unperturbed post-bifurcation path is approximated
by a perturbed path which does not exhibit bifurcations. Results obtained for an imperfect
system are often regarded as being closer to reality. Nevertheless, such an analysis is not
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always satisfactory since the results can strongly depend on the form and magnitude of the
assumed initial impertection.

In the present paper the bifurcation problem in a general setting [cf. Hill (1961)] is
revisited under the addiional assumption that an nitial-boundary value problem posed
onginally for a plastically deformed continuum has been sputially discretized. The resulting
discrerized non-finear rate problemst are treated in their own merit: no attempt is made to
study convergence of discretized solutions to the exact solution for the continuum.
Incremental non-linearity of the material in a general form encompassing the vield-surface
vertex effect is taken into account. Classical plasticity problems. such as cotumn buckling,
for instance. arc also covered by the analysis and may serve as tlustrations. The generality
of considerations 15 motivated by the known inadequacy of classical elastoplastic models
(as J.-flow theory) in certain bifurcation calculations which are sensttive to details of the
incremental constitutive faw : for a review. see ¢.g. Christoffersen and Hutchinson (1979).
The basic restriction here is that the global tangent stiffness matrix (which at a given
deformation stage s non-lincarly dependent on the current “direction™ of further defor-
mation) must be symmetric. In Scction 3 the statements concerning existence., uniquencss
and stability of discretized solutions are presented which are not contained in Hill's generul
theory for a continuum {cf. Hill (1978)] nor in an alternative theory developed by Nguyen
(1990).

As an outcome of the theoreticat analysis, a computational method is proposed which
is applicable to large strain plasticity problems for non-linear constitutive rate equations,
The method leads to a unified teeatment of a class of problems where bifurcations are
present and problems where the continwition of deformation is unique @ there is no need to
introduce any imperfections or perturbations to the analyzed system nor to apply another
numerical technique when i bifurcation is met. The essence of the method lies i solving
non-lincar first-order rate problem by muninizing the value of a velocity functional. This
might be regarded as an extension to hinite detormations of the known approach to a class
of plasticity problems where geometrie changes are disregarded which is based on the
classical minimum principle for velocities [of Kotter (1960)}, However, there is a tun-
diumental distinction, namely, the minimum principle is no longer unconditionally valid
when geometric non-lincarity is taken into account (Hill, 1959). Only the stationarity
principle for velocities is guaranteed in the latter case (op. cit) and therefore the mini-
mization procedure which excludes certain solutions requires another theoretical justi-
fication. This is ollered by the energy criterion of instability of o quasi-static deformation
process [cl. Petryk (1982, 1985, 1991)]. In Section 3 it is shown that a deformation path
along which the actual velocity ficld does not correspond to an absolute mintimum of the
tunctional should be regarded as unstable, although cach of the equilibrium states separately
may still be stable. As a rule, that instability concerns the fundamental post-bifurcation
path. The minimization procedure enables caleulation of another solution in velocities and
automatic switching to a secondary branch emanating immediately beyond the primary
bifurcation point. It is emphasized that a non-finear bifurcation problem is solved in this
way rather than the usual linear cigenvalue problem. The procedure has the advantage that
it is also applicable when the biturcation is induced by a discontinuous change of material
parameters since singularity of the tangent stiffness matrix at the critical pomnt is not
required. Morcover, it can be applicd irrespectively whether the primary bilurcation takes
place through non-uniqueness in velocities or in a higher-order rate of displacements.
Certain limitations will be discussed later : for instance, the method is nos suited for crossing
bifurcation points in purely clastic solids.

There are well known numerical deficiencies of the explicit Euler time integration
scheme, therefore the question arises how to implement in practice the above solution
method which theoretically applies to rate problems. Our suggestion is to take advantage
of the fact that in usual circumstances the regular second-order rate problem is linear

+ We were unable to find n the literature any comprehensive study of bilurcations in a general problem off
that type. especially for 1 non-singular tangent stiffness matrix. [Uwill be shown m Scction 3 that the assumption
of a finite-dimensional system allows conclusions to be drawn that are unavailable at present for the continuum
problem ot similar venerality.
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[cf. Klushnikov (1980): Triantafyllidis (1983): Petryk and Thermann (1985)]. with the
respective matrix being exactly the tangent stiffness matrix associated with the first-order
solution. I[n the second-order algorithm discussed in Section 4 the linear problem for quasi-
static accelerations is solved at each time step. and the solution is used for updating purposes
in order to improve the time integration accuracy and hence total effectiveness of the
method.

A finite element program has been developed for numerical simulation of large plastic
deformation processes by using the method proposed here. It is not our present aim to
examine numerical features of the algorithm ; the numerical results shown below are thought
of merely as illustrations of potentialities of the method. As a testing example, the local-
ization of deformation in a rectangular specimen subject to plane strain tension is analyzed
for a solid obeying J.-corner theory of plasticity (Christoffersen and Hutchinson, 1979). In
comparison with the analysis by Tvergaard et al. (1981), no initial imperfection is assumed
so that the necking starts at a bifurcation point. To illustrate the possibility of calculating
bifurcations caused by a discontinuous change of the tangent modulus, a piecewise lincar
stress-strain curve is also used in addition to the usual power hardening law,

Notation

The standard symbolic notation is used throughout the paper. Spatial vectors or tensors
are denoted by boldface letters, and their Cartesian components are denoted by lower case
Latin subscripts for which the summation convention is adopted. A dot between two tensor
symbols denoles contraction over two pairs of the subscripts in the sense that ¢,,h, = a-b,
Abis = (Ab),, @, dyby = 2+ A b, while the product a,b, is denoted by ab. Components
of vectors or matrices obtained via a discretization procedure are denoted by Greek sub-
sChpts,

Since only time-independent materials and isothermal quasi-static deformations are
considered, the role of a natural time is played by a time-like parameter ¢, called time
for simplicity. A dot superimposed over a symbol denotes the material time derivative,
understood in the right-hand sense. To simplify the notation, the same symbol is frequently
used for a function and its value.

2. CONSTITUTIVE RATE EQUATIONS AND A DISCRETIZED RATE PROBLEM

Constitutive rate cquations
Constitutive rate equations for a time-independent material, no matter what their
original (objective) form, can generally be written as [ef. Hill (1959)]

S = S(F, #), (n

where S is the first Piolu-Kirchholt stress tensor (the transpose of the nominal stress
tensor), F is the deformation gradient, and s symbolizes the influence of the deformation
history from a given initial state up to the considered instant, including the current stress
and deformation ; in the following the symbolic argument s will for simplicity be omitted.
The function S(F) (at the actual state of the material element) is assumed to be continuous
and piecewise smooth but need not be invertible, also when expressed in other variables,
so that the analysis also applies to so-called softening materials. For the material to be
time-independent S(F) must be positively homogencous of degree one but otherwise it can
be arbitrarily non-lincar. By the Euler theorem, at a point of differentiability of $(F) the
constitutive cquation (1) can be written in the form

$=C(F)-F, C(F)= ‘?i(:). @)

The dependence of instantancous “stiffness”™ moduli C on F is homogeneous of degree zero
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and may be discontinuous and non-linear, not necessarily piecewise constant as in the
classical elastoplastic models.

The equation (2), can serve as a starting point to define the relationship (1). but
then the continuity of S(F) requires appropriate restrictions to be imposed on possible
discontinuities of C(F). Moreover. if the equality (2), (which will be needed later) is to be
maintained then the condition

E‘Clikl/aan = aCljﬁlﬂ/apkl (3)

must be satisfied wherever C(F) is differentiable. Conversely, (2), with (3) imply (2).. by
the required homogeneity of C(F).

We shall assume, following Hill (1959). that the constitutive equation (1) admits a
potential, viz.

§=p. U =18 F. @

This is equivalent to imposing the symmetry restriction on the moduli (2),. viz.
Ciwt = Cuyy s (3)

necessity for (4) is obvious since C = 02 U/0F @F, and sufficiency for (4) follows from (2).

For clastic materials, (5) is a consequence of existence of a strain energy potential. It
is well known [ef. Hill (1958, 1978)] that the property (5) also holds for the classical
clastoplastic model which obeys the normality flow rule relative to a smooth yield surface
(for work-conjugate variables). If' the phenomenological law (1) is intended to describe
more accurately the incremental behaviour of metal polycrystals in the plastic range then
the effect of the formation of a vertex on the yield surface at the current loading point
should be taken into account [cf. Hilt (1967) ; Hutchinson (1970)]. At a yield-surface vertex,
{5) is no longer a consequence of the normality flow rule alone but represents an additional
assumption,

Stilt another restriction on the constitutive model will be considered which is based on
micromechanical considerations. Contrary to (5), it is not necessary for applicability of the
proposed method but provides justification for assuming that there is no bifurcation along
a smooth deformation path so long as the tangent stiffness matrix is positive definite.
Suppose that the material at a micro-level is elastic-plastic and obeys the normality and
piccewise-lincarity postulates, which are commonly regarded as acceptable for time-inde-
pendent models of metal single crystals {cf. Hill and Rice (1972)]. Suppose also that an
analog of the symmetry condition (5) is valid at the micro-level. Then the normality flow
rule and existence of a velocity-gradient potential (4) at the macro-level can be inferred
(Hill, 1972 Petryk, 1989). Further, consider a smooth segment of a deformation path along
which the rates of macroscopic stress and strain and the respective tangent moduli vary
smoothly in time, and denote by superscript 0" the corresponding quantities. Then one
can argue that the rates 8" and F° at the macro-level do not correspond to abrupt unloading
at the micro-level, with the following consequence for the macroscopic constitutive law
(Petryk, 1989)

§F-S-F' >0 foreveryF, (6)

where (S. F) is an arbitrary pair of virtual stress and deformation rates, related by (4). The
significance of (6) for a study of bifurcation problems stems from the fact that if (6) is
satisfied then a sufficient condition for uniqueness of a solution in velocities to a class of
boundary value problems can be formulated in terms of the tangent moduli C° = C(k"
alone. no matter what is the actual non-linear constitutive law (4) (op. cit.).
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Relationships needed to express the above formulae in terms of other measures of
stress and strain and their rates can be found in Hill (1978). For instance, let the corotational
(Zaremba-Jaumann) flux of the Kirchhoff stress be denoted by %, the Eulerian strain rate
by D. and the respective moduli by Bg(D)/ED = L(D), so that (2) is equivalent to
¥ = L(D) - D. Denote by o the current Cauchy stress and by d;, the Kronecker symbol. Then
the relationship between L and C reads

det(F " "YF,F,Copty = Lijiu— %‘.(Ujkéil"‘aakéjl'!'ailéjk +0;04). )
(5) is equivalent to L, = Ly;;. while (6) is equivalent to
D-%-D°>0 foreveryD, (8)

with the same meaning of the superscript 0 as before.

Later we shall also need constitutive equations for the second-order rates of stress.
Since the second-order problem plays only an auxiliary role here in the computational
algorithm, we introduce certain simplifying assumptions. We shall assume that within a
single time step the deformation history influence is represented by a smooth dependence
of § on a finite number of material parameters H* varying in a prescribed way with the
deformation (it is inessential here whether they are scalars, vectors or tensors) which are
substituted in place of the symbolic argument J# in (1). For simplicity of the notation, the
current stress and deformation are also regarded as elements of the set {H*}. Formal
differentiation of (1) with respect to time then yields

s

-, 9

with the summation over all K. We can assume that 7% = H¥(F, #*) so that the last term
in (9) can be found from a first-order solution. [t follows that if the moduli C(F) arc defined
for the actual F then the relationship between 8§ and F is linear (although inhomogencous).
This observation (Klushnikov, 1980) is essential for efficiency of the second-order algorithm
described in Section 4 ; we note that the existence of a potential (4), and hence the symmetry
property (5) are not needed for the validity of (9).

Formulation of discretized rate problem
A convenient starting point to formulate a discretized rate problem in Lagrangian
description is the rate form of the virtual work principlet

fS-(Vw)dV:JdeV+JdeS, (10)
b 124 A

where ¥ and S are respectively the body volume and surface in the reference configuration,
b and T are nominal body forces and nominal surface tractions per unit reference volume
and area, respectively, the symbol V denotes a gradient evaluated in the reference con-
figuration, and w = dvis any kinematically admissible variation of velocities v. The reference
configuration is assumed to be fixed ; in the case of updated Lagrangian formulation all
considerations remain valid within each separate time step. We shall consider a discretized
ratc problem in which velocity ficlds are restricted to having the form

v(§) = @D, an

where § is a position vector of a material point in the reference configuration, ¢,,

t1tis assumed that all strong discontinuities in S, b or T are material surfaces or lines, at least within some
time interval starting from the considered instant.
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x=1,..... V. are linearly independent. continuous and piccewise sufficiently smooth
“shape functions™ given on " and r, are numbers whose meaning depends on the adopted
method of discretization. In a finite element formulation, ¢, correspond to velocity com-
ponents at nodal points but that restriction is not necessary here. The summation convention
over the range from 1 to .V is adopted for repeated Greek indices: a different range of
summuation shall be indicuted explicitly. Since ¢, are fixed functions of material coordinates,
the decomposition (1 1) is equally valid for displacements u(&) = ¢, (&), velocity variations
w(E) = @, (Ehv,. etc. A column vector with components ¢,.x = [.... .. N, will be denoted by
v and identified with a velocity field. with analogous convention for a. W, etc.

Values of ¢, can be constrained by boundary data for velocities: the attention is
confined here to equality constraints such that rigid translations or rotations of the whole
body are excluded. We assume that the form and numeration of the functions ¢, have been
chosen such that in a kinematically admissible veloaity field v the components ¢, remain
unconstrained for x < M and take prescribed values &, forx = M+ 1., V. Consequently,
kinematically admissible velocity variations w are subjut to the restriction w, =0 for
x> M. It will be convenient to formally define the respective sets:

f= o, =0, for x=M+1 0N

#o= wiw, =0 for x=M+1,. .. .N! (1)

and to reserve the symbol w for an clement of # " only. Note that any function on ¢ " can
be equivalently regarded as a certain other function on the lincar space #

For the sake of simplicity we shall assume that the external loading, in the torm of
nominal body forees and nominal surface tractions, is independent of the body configuration
a possible extension to a class of configuration-dependent conserrative loading will be bricetly
discussed below. Henee, b and T in (10) are regarded as given, with the usual restriction
that only those components of 't are preseribed which are complementary to preseribed
velocity components. Components of a preseribed vector of diseretized loading rate are
obtuined in the stundard way as

P, = |'up,dt'+J Te,dS, x=1,....M. (13
} N

The first-order problem of continuing cquilibrium, defined by (10). reduces alter
discretization to the system of non-lincar algebraic equations

O.M)=P~,. a=1.....M vet, (14

where

0.9 =J S(Vv) (Vo) dV, 2=1,....N (15)
.

are the rites of “internal forees™. The rates ire non-lincarly dependent on ¥ : the dependence
is homogencous of degree one, on account of homogeneity of (1).

The system (14) can generally be rewritten in terms of a tangent stiffness matrix which
is dependent on the velocity field due to the non-lincarity of the constitutive rate equation
(1). However. it should be mentioned that a tangent stiffness matrix is not defined for v = 0.
or more generally when Vy corresponds to a non-differentiability point of S(F) in a body
domain of finite volume. To avoid repetitions. those particular circumstances will be tacitly
excluded below from considerations in all cases when the notion of a tangent stiffness matrix
is used. Under that reservation, the augmented (N x V) tangent stitfness matrix. on account
of (2).. 1s given by
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K = 5 =£,(V¢,)-C(Vv)-(V¢ﬂ)dl'. (16)

By (2),. the system of equations in (14) takes the form
Ky@uy=P,. a=1...M (17

In a more explicit but less concise form, (17) can be written as

14 Al
Y Ky =P,— Y Ky a=1..... M. (18)
B=1

B=M+1

where [K] is the tangent stiffness matrix, being the first M x Af minor of [K].
We have assumed that the constitutive rate equation (1) admits a potential, so that
(14) or (17) can be given a variational formulation, viz.

J(¥
OJ(V; W) = {(’t(") w, =0 Tforeverywe # ', (19)
where
, M i M .
J¥) = 10,(Me, = Y P, =J uvwdyr-=3 P, (20)
x| & 1=t

This is a discretized form of Hill's {(1959) variational theorem for a continuum, J and its
partial derivatives 0J;0r, are everywhere continuous functions of ¥, by the assumed con-
tinuity of the constitutive relationship (1). The variational cquality (19) is equivalent to
vanishing of &J/0r, fora = 1,... M, and hence to (14). The augmented tangent stiffness
matrix can be determined from

(72.1(\77)

Ko (§) = oot
u(¥) ov, vy

an

and is obviously symmetric.

It is possible to extend the considerations to cuses where the incremental loading
consists not only of the prescribed part but also of a deformation-sensitive conservative
part,t viz.

. M
Po=P.— Y kyty, ky=kp a=1...M, (22)
g1

where the quantities k,, may depend on the deformation state but are independent of v.
For instance. clastic supports or the loading by prescribed fluid pressure can lead to
expressions of type (22). In such cases the tangent stiffness matrix has to be modified by
replacing I(',,, by the sum I(',,,+k,,,. with respective modification of the function (20). For
simplicity, we take P, = P,(4), x = 1,.... M, as given functions of a scalar loading par-
ameter 4 which in turn varies in a prescribed way in time, 4 = i(r).} Consistently, the
geometric constraints arc taken in the form u, = @,(4), x = M +1,..., N, where i, (4) are
given functions, with &, = (da,/d2) 4.

+In the sense that the toral work done by that part of loading is path-independent to second-order terms ;
cf. Hill (1962).

1 Note that 4 need not be a multiplicr but is simply a time-like parameter ; it will be convenient later to treat
the loading parameter 4 and the ““time™ 1 as being distinct.
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Second-order rute problem
The second-order rate equations of continuing equilibrium are obtained by differ-
entiating (14) with respect to time and can be written as

0.3V ) =P, x=1... V. (23)

with the kinematic restriction ¢, =¢, for x = M+1...... V. imposed on admissible
“acceleration” fields. We shall assume that spatial discontinuities in S are not moving
relative to the material. ¥ Under this restriction. on taking the time derivative of (15) and
substituting (9) and (16). we transform (23) to

Kz/l(;')lill = PX_RX(;)' X = l""“‘[‘ ‘:4)
where the quantities

‘S

HYdI (

19
4
-~

(v) .,;( ) Ak

are independent of accelerations v and can be calculated once the first-order solution has
been found: the arguments of the integrand functions in (25) have been omitted for
simplicity. It the angmented tangent stitfness matrix [K](¥) s well defined then (24) con-
stitutes a linear system of equations for the unknowns ¢,

3 BIFURCATION AND INSTABHLITY

Encrgv interpretation of continuing equilibrium
The deformation work in the body during a process of deformation in a tme interval
(0, 1) 1s expressed as

H'=J Q. dr, Q. = Q,+J O.(¥) dr. (26)
[}

i

where Q, and @, are related to the stresses at an initial state at £ = 0 and at the current
state, respectively, by the formula analogous to (15) but with the rate symbol omitted.
Along any kinematically admissible deformation path, the energy functional is defined as
(Petryk, 1982, 1985)

E=10+Q. (27)

where Q = Qqu, 2) is the potential energy of the loading device which in the considered case
can be expressed as

Q

Cu,

A\
Q=-Y Pu,. P, =- (28)
x -

In general, £ is a functional of the deformation history due to path-dependence of 1. Let
a deformation path be followed in a quasi-static manner, in general under the action of
additional perturbing forces varying continuously in time. An increment of the value of £
along such a path can be interpreted as the amount of energy which has to be supplicd
from external sources to the mechanical system consisting of the body and the loading
device according to the energy balance. [t is emphasized that an increment of the value of

+ This is in accord with the simplifying assumptions concerning dependence of § on £7% within a single time
step. However, the possibility of step-wise propagation of a discontinuity of § is not excluded.



On discretized plasticity problems with bifurcations 753

(—Q) is generally not equal to the work done by the loads P, unless the loads are constant
in time.
The first (right-hand) time derivative of £ reads

M
E = E(;) = Ll — Z (le.z+P1ux)' (29)

1=1

The values of P, for x < M. and of ¢, for x > M. are prescribed. It follows that the internal
forces are in equilibrium with the external forces, thatis @, = P, forx = 1..... M. if and
only if £ is independent of ve #~. Hence, the equilibrium condition can be written as

E(¥) = const. in¥ . (30)

The second time derivative of E, when calculated at an equilibrium state. reads

1Y) N M
E=EW) =0,0,-2Y P+ Y Q40— Y P, 31

2= 1=M+1 x=1

Let ¥ and ¥%' be any pair of admissible velocity fields at the equilibrium state. Since
the last two terms in (31) have prescribed values, by comparison with (20) we obtain the
identity [cf. Petryk (1982, 1985)]

gﬁ(;(l))_é[‘;(;ll)) =J(?(2))—J(;"“). (32)

Hencee, the first-order rate equations of continuing equilibrium (14) can be cquivalently
written down as

SEF:w) =0 forevery we o, (33)

This means that any solution in velocitics corresponds to a stationary value, with respect
to variations in the set ¥ of admissible velocity fields, of the increment of the encrgy
functional £ calculated with accuracy to second order terms,

Stubility of equilibrium

Consider now an equilibrium state under constant loading, A(r) = const., so that £, = 0
forx=1,... .M, f,=0fora=M+1,...,N.and ¥ = # . The energy criterion of stability
of equilibrium, formulated in the literature with various degrees of exactness, is obtained
by comparison of the deformation work done along arbitrary (non-equilibrium) paths
starting from the cquilibrium state with the respective work done by external loads. Since the
external foads are assumed constant, the work diftference coincides now with the increment
of the energy functional (27). The increment of E has to be calculated with accuracy at
least to second-order terms since £ = 0 at an equilibrium state. An cquilibrium state is said
to be directionally stable if

E(W) >0 ati=const. forevery w s 0. (34)

For the considered problem this is equivalent to
Q.(W)w, >0 forevery w # . (335)
This incquality is a discretized version of Hill's (1958, 1959) condition of stability ; cf. also
Drucker (1964). By the physical interpretation of an increment of £, (34) excludes a
spontancous departure from equilibrium along a direct path by imposing an energy barrier

in all directions (but does not guarantce stability in a rigorous sense for arbitrarily circuitous
paths without additional assumptions). If
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Q. (W)w, <0 forsome w {36)

then such a departure ts encrgetically possible : moreover. with the help of (4) the equilibrium
state can also be shown to be unstable in a dynamic sense (Petrvk, 19913 Therefore. we
may accept that (36) is excluded along any cquilibrium path which has a physical meaning
other paths may be regarded as unobservable solutions under the assumed loading con-
ditions.

Existence of first-order solution

Since the system of egns (14) is non-linear, it s not evident under which circumstances
it has a solution. However, the system admits the variational formulation (19) while the
leading term in the potental function (20) is @ homogeneous function of degree two of the
unknowns ¢, : this aids the proof of {cf. Petryk (1991)] the existence of a solution under an
assumption which has a clear physical interpretation.

Theorem L. The system of egns (14) at a dircetionally stable equilibrium stare hus a
solution which assigns to J its absolute minimuret value in 4.

The proof of Theorem | s given in the Appendix.

As long as cquilibrium i directionally stable. Theorem 1 provides a basis for the
computational methed in which the stationarity condition for J, cquivalent to (14). s
replaced by the stronger condition for a munimum of Jin ¢ In that range. both conditions
are equivalent to cach other it the solution to (14} is unique : the case of non-uniquencss is
discussed below. On the other hand, if (36) is satisfied so that the equilibrium s unstable then
one can casily show [cf. Petryk (1983} that J is unbounded from below, The minimization
procedure then fails, although o solution to (14) may exist and may even be unique. As
mndicated above, such solutions are not expected to have a physical meaning.

Bifurcation and unigueness

It a solution ¥ to (14 at a directionally stable equilibrium state does not correspond
to un absolute minimum of Jin 1 " then ¥ cannot coincide with the solution guaranteed by
Theorem | and is thus not unique, Suppose that a solution ¥ does correspond to the absolute
minimum but the minimum is also reached for some other field ¥* from 7. Since J is
everywhere differentiable, cach minimum point is also a stationary point, so that ¥* is also
asolution to (14) and ¥ is again not unique. Henee, we have proved the following statement.#

Thearem 2. Far uniqueness of a solution v to {13y at a directionally stable equilibrium
state it is necessary that ¥ assigns 1o J a striet and absolute minimum valve in 17, viz.

J(¥) < J(¥*) forevery v #v, v*et (37)

Since positive semi-definiteness of the second variation is necessary for a minimum,
from (21) we obtain that for unigqueness of a solution ¥ to (14) at a directionally stable
equilibrium state it is necessary that the respective tangent stiffness matrix [K] is at least
positive semi-detinite.d that is

Kp(¥hwon, 20 forevery w. (38)
We thus arrive at the following concluston [ef. Petryk (199D].

 This is a stronger result than proving {37) from the strict convexity of J which is merely sufficient tor
uniqueness and for (34} [cf. Hill (1939, 197%)]. Although Theorem 2 is merely a corollary of Theorem Lot i
distinguished as a separate theorem sinee it provides a fairly general condition aecessary for uniqueness, with far
reaching implications,

11 the incremental constitutive faw (213 1s piccewise linear then equality in (38} for some non-sera w
usually implics aon-unigueness of the solution #1 this is refated to a typical primary bifurcation point. If the
relationship is thoroughly non-lincar then the implication is generally not true, however, it should be noted that
if [K] is singular then the solution to the second-arder problem (24 is non-umique.
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Corollary 1. The solution in velocities is non-unique at every point on a solution path
along which (35) holds but (38) dves not ; this meuns that the bifurcation points are then not
isolated but form a continuous non-uniqueness range.

This may be regarded as a generalization of the known observation (Shanley, 1947) that
the incremental response of a model of a straight plastic column under increasing com-
pressive loading is non-unique for the load between the tangent modulus load and reduced
modulus load : note that (38) holds up to the former load while (35) up to the latter. On
the other hand. the column response at a buckled state along a secondary post-bifurcation
path can still be unique.

It is well known that for uniqueness of a solution to (19). and thus also to (14). it is
sufficient {but not necessary) that J is strictly convex. Hill (1959, 1978) has formulated a
property of constitutive equations for the material, called the relative convexity property.
which allows the establishment of the strict convexity of J, and hence uniqueness, from
positive definiteness of the stiffness matrix for an incrementally linear comparison material,
Recently, it has been shown (Petryk, 1989) that for a certain class of materials uniqueness
can be inferred from positive definiteness of the tangent stiffness matrix without the need
for convexity of J. In the present notation, the uniquencss criterion takes the following
form.

Theorem 3. If there exists a solution ¥° to (14) such that
(i) the respective tangent stiffness matrix [K*] is positive definite, and
(i) the stress and deformation rates S° and ¥ corresponding to ¥ satisfy the
constitutive incquality (6),
then the solution ¥ is unique.

The proof runs on exactly the same lines as in the non-discretized case discussed by
Petryk (1989) and therefore need not be repeated here.

The constitutive restriction (6) is generally weaker than the refative convexity property
and, moreover, can be derived from micromechanical considerations. Under the restrictions
imposed on the material behaviour at the micro-level as indicated in Section 2, the consti-
tutive inequality (0) is appropriate for time-independent models of plastically deformed
polycrystals, provided that ¥ corresponds to a smooth continuation of the deformation
path. Theorem 3 thus provides justification for the common assumption that positive
definiteness of the tangent stitfness matrix excludes bifurcation; we note that the second-
order problem (24) then also has a unique solution. The conditions (i) and (ii) of Theorem
3 can be satisticd not only before the first bifurcation point on the fundamental path but
also along a secondary post-bifurcation path, of course, with the exception of the bifurcation
point itself. From Theorems 2 and 3 we also obtain the following conclusion.

Corollary 2. If (35) and (6) hold along u deformation path then positive definiteness of
the tangent stiffness matrix [K°} is necessary and sufficient for uniqueness of the first- and
second-order solutions.

Instability of a deformation path
Although a quasi-static deformation path is a onc-parameter family of equilibrium
states, path-sensitivity of plastic materials results in the necessity of treating a plastic
deformation path as a unity rather than as a collection of independent points. Therefore.
there is no reason to identify the notion of stability of a plastic deformation path with
stability of equilibrium states reached along that path. Below we briefly recall the concept
of instability of a quasi-static deformation process (or path. in the present terminology) in
the energy sense, introduced by Petryk (1982, 1985) for the class of materials and loading
conditions encompassing those considered here.
The following criterion of path instability is adopted : Along a stable deformation path
the actual deformation increment must minimize the value of the increment of the energy
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functional E. calculated with accuracy 1o second-order terms. within the class of all kine-
matically admissible deformation increments. This may be regarded as a specification of
the intuitive engineering hypothesis that a real deformation mode in metals exhibits a
tendency to minimize the energy consumption ; justification of the criterion is discussed
below. Since. as shown above, the value of £ at an equilibrium state is independent of the
actual deformation mode, the instability criterion can be expressed in terms of £ only. If

E(*) < E(¥) forsomev*ey’ (39)

then a continuation of the deformation process with the velocity field v is unstable in the
energy sense. For 4 = const. and ¥ = 0. (39) reduces to (36). For / # const.. (39) is implied
by (36) [cf. Petryk (1985)]. but the converse is false in general.

From the identity (32) by negation of (39) we find that for stability of a deformation
path in the energy sense it is necessary that at each point on the path the respective velocity
field ¥ assigns to J an absolute minimum value in 7, viz.

J(¥*) = J(v) foreveryvter . (40)

[t can be shown [cf. Petryk (1991)] that (40) is satisticd by the fundamental solution v = ¥
in the uniqueness range defined by the conditions (i) and (i1} of Theorem 3. In turn, (38) is
necessary for (40) and 1s thus necessary for stability of the process. Henee. a continuation
of deformation with velocities ¥ is unstable tn the encrgy sense when

Kp(¥)wowy <0 torsome w (41}

which usually takes place along the fundamental path immediately beyond the primary
bilurcation point.

To determine the nature of the instability of a deformation path predicted by the
energy criterion, two typical cases have to be distinguished. It (39) is satistied along a
segment of a quasi-static deformation path simultancously with (36) then, as mentioned
above, the equilibrium states are unstable and a spontancous dynamic departure from any
such state at constant loading should be expected. If (39) is satisfied along a segment of the
path simultancously with (35) then instability has a different character, namely, a quasi-
static deviation from the path at varying loading should be expected at any instant. For,
from Theorem 2 and (32) it follows that at every point ulong the segment there is a
bifurcation in velocities such that the secondary continuation corresponds to 4 minimum
of £ and is thus energetically preferable. It is also reasonable to conclude that such segments
of theoretical deformation paths, and not only scgments along which cquilibrium is unstable,
do not have a physical meaning.

Critical stage of deformation

Suppose that the tangent stiffness matrix [K] evaluated for the actual velocity field
along a fundamental deformation path is positive definite up to a certain critical point and
becomes indefinite beyond that point. We focus attention on the question, essential for the
proposed computational method, under which circumstances the directional stability of
cquilibrium is preserved on the fundamental deformation path just beyvond that point.
Suppose that the fundamental solution ¥ and the tangent moduli vary smoothly along the
path so that [K](¥) is just positive scmi-definite at the critical point, with one or more
cigenmodes, i.e. eigenvectors corresponding to the zero eigenvalue. The instability condition
(36) can be written down in the form

Kyp(Ww,wy <0 forsome w (42)
and compared with (41). If w* is an eigenmode at the critical point then in general we have

(41) for w = Ww* just beyond that point. This implies instability of equilibrium immediately
beyond the critical point if w* happens to correspond everywhere in the body to the
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constitutive regime of the fundamental moduli (i.e. C(Vw*) = C(Vv) everywhere) so that
the stiffness matrices in (41) and (42) coincide. (This is always so in incrementally linear
materials, in particular in elastic solids.) As mentioned above when discussing the existence
of the solution. J then becomes unbounded from below and the minimization procedure
fails. However, available results suggest that this case is rather an exception in elastic-
plastic solids so long as a limit point (at which ¥ itself is an eigenmode) is not reached.
especially when the presence of a yield-surface corner diminishes the constitutive domain
of fundamental moduli.

Consider thus a typical critical point at which the gradient Vw* of any eigenmode is
in some spatial domain directed outside the constitutive regime of the fundamental moduli.
that is. S(Vw*) # C(F") - (Yw*) in some domain: from now on we identify ¥ with ¥' and
assume that the condition (ii) of Theorem 3 is satisfied. From (6) it can be concluded
(Petryk, 1989) that

S(F)-F>F-C(F")F foreveryF, (43)

with equality only if $(F) = C(F")-F. On integrating (43) over the body volume and
substituting (15) and (16), we find that at the crittcal point

Q0,(W)w, = Ky(¥)w,wy 20 forevery w # 0, (44

with the left-hand equality only if Vw corresponds everywhere to the fundamental consti-
tutive regime, and with the right-hand equality only if w = w*. Let |W| denote & norm in
%', and

u = min Q,(W)w,. (43)

|| =1

Since one equality in (44) excludes the other by the assumption concerning Vw*, it follows
that g > 0 at the critical point. If the constitutive relationship along the fundamental path,
assumed smooth, docs not change discontinuously then g must remain positive along some
subsequent scgment of that path, By homogencity of @, (W), this implics dircctional stability
of equilibrium along the fundamental path in some interval beyond the critical point. The
conclusion remains valid for a secondary post-bifurcation path provided the material
stiffness in any direction does not decrease discontinuously at the bifurcation point.

Conclusions

For incrementally non-linear time-independent materials, deformation paths can exist
along which the actual tangent stiffness matrix is indefinite but each cquilibrium state is
still directionally stable. Nevertheless, such a path itself should be regarded us unstable
since at cach point the solution in velocities is not unique, so that infinitely many sccondary
paths can emanate from the path; moreover, the secondary continuations of deformation
are energetically preferable. This kind of instability is avoided only when along the path,
except possibly at isolated points, J(V) attains its absolute minimum in ¥ " at the actual
velocity solution. Existence of a solution to (14) which minimizes J(¥) is ensured as long as
the equilibrium state is directionally stable. Such a solution has the energy interpretation
as a minimizer of the second-order increment of the energy functional £,

On this theoretical basis we propose below a computational algorithm which sclects a
solution by minimizing the value of J(¥) in ¥, Since (41) excludes ¥ as a minimum point
of J, in that algorithm the primary solution path is left automatically as soon as the tangent
stifiness ceases to be positive definite and becomes indefinite. The secondary solution in
velocities is also determined automaticallyt provided the directional stability of equilibrium
is preserved. Other qualities of the proposed method have been listed in the Introduction
and are illustrated below in a numerical example.

t We recall that the actual rate problem is non-linear, so that a minimum point of J defines both the direction
and magnitude of the bifurcation mode.

8AS 29:6-G
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4. COMPUTATIONAL ALGORITHM

The basic step in the proposed computational procedure is to find a solution to the
rate problem (14) by minimizing in ¥~ the value of the velocity functional J defined by (20).
This can be done by using one of the known methods for unconstrained optimization [see
e.g. Fletcher (1980)]. As a natural starting point in a minimization procedure one can take
the velocity field from the previous time step. In our finite element calculations we have
used Newton's method combined with the negative curvature line search when the tangent
stiffness matrix is not positive definite (cf. the discussion below). However, this choice
should be regarded only as preliminary since other numerical techniques may prove more
efficient for the type of non-linearity of J: this question requires further study. It should be
pointed out that in the non-uniqueness range it may happen that a minimization routine
terminates at the saddle point. corresponding to the fundamental deformation mode, rather
than at a required minimum point corresponding to a secondary mode. It is therefore
reasonable to compute and factorize the tangent stiffness matrix [K] corresponding to the
final velocity vector obtained after minimization, even if this is not necessary for other
purposes, in order to check whether the matrix is positive definite. If it ts not then our
suggestion is to perform a line search in a negative curvature direction which can easily be
calculated (Fiacco and McCormick, 1968) and then to return to a general minimization
routine. Unfortunately, it is difficult to ensure that the minimum found is a global one. If
during minimization the value of J exhibits a tendency to decrcase unboundedly then this
means that the current (approximate) equilibrium s unstable. Further continuation of
calculations without changing the algorithm is not possible. According to the theoretical
analysis from the preceding section, this is generally nor expected in the vicinity of a typical
primary bifurcation point in an incrementally non-linear solid.

It 1s well known that the straightforward time integration of first-order rate solutions
according to the explicit Euler scheme is generally unsatisfactory unless very small time
steps are used. To improve accuracy of time integration, we propose to use the following
sccond-order algorithm.T At cach time step not only the first- but also the second-order
rate problem is solved and then used in an updating procedure similar to a dynamic-
response analysis. An advantage of doing this stems from the fact that once a fiest-order
rate solution has been found, the lincar second-order rate problem (24) with quasi-static
accelerations as unknowns can be solved by using the actual (already factorized as suggested
above) tangent stiffness matrix. There are different possibilitics to compute the values of
R, needed for this purpose. 1t is essential that contributions to (25) from individual inte-
gration points can be computed separately. The values of integrand function in (25) at an
integration point can be found analytically if the material model is not too complicated ; a
mixed technigue can also be used in which the values of certain /¥ defined implicitly in the
model are determined numerically by a finite difference approximation. In principle, it is
always possible to find the value of the needed product numerically, simply as & quoticnt.

-~ N K Ky & F A
S yyw o SUHHAHY) =S(F 1) (46)

-~

CH* At

where AH* are increments of H* due to the deformation increment FAz, and Aris a small
time increment which can be chosen independently of the time step discussed below ; such
increments A * must in principle be determinable in any time integration algorithm. In
practice, calculation of R, may require lengthy although rather straightforward trans-
formations to be carcfully implemented since the primary variables in the constitutive rate
equations are usually different from S, F.

It is emphasized that the first- and second-order problems can be solved hefore speci-
fying the current time step used for updating. Advantage of this can be taken in establishing
an adaptive step-size control based on an estimate of the error introduced by neglecting

+ We note that the sccond-order algorithm does not reqaire syrametry of the tangent stitfiess matrix, and
could be used independently of the method adopted for solving the first-order rate problem.
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higher-order terms. Moreover, an extrapolated value of the determinant or lowest eigen-
value of [K] can be used to select the time step such that the calculated point of branch
switching lies within required tolerance from (but always somewhat beyond) a primary
bifurcation point.

Summary of the algorithm

Step 1. Initialize.

Step 2. Calculate ¥ by minimizing J(¥) in ¥". If J(¥) decreases unboundedly then stop. If
Igrad J(¥)] is sufficiently small then compute [K] corresponding to ¥ and factorize.

Step 3. Check whether [K] is positive definite. If not then perform the negative curvature
line search and go to Step 2.

Step 4. Compute R, and find ¥ from the lincar system of eqn (24).

Step 5. Determine the time step and update using the first- and second-order solutions. Go
to Step 2 if further computations are needed, otherwise stop.

5. NUMERICAL EXAMPLE

Constitutive equations

A finite strain version of the J, corner theory ol plasticity proposed by Christoffersen
and Hutchinson (1979) is employed. At a conical vertex which is thought to be formed on
the yield surface at the current loading point, the constitutive rate equations are taken in
the form

(¥ v W
l)=‘-—~~~f,”r=l\‘l(¥)*¥. M¥) =" Vf‘.’.
0t 0t
. seM"-¥

¥y = ¥-M¥r L (@F M- E, cos @ =

(s*M"-5) 2(§-m"- )2 @7

where M° and M” are symmetric positive-definite tensors of the linear clastic compliancest
and the plastic total loading compliances, respectively, such that M+ M?" is the tensor of
compliances of the hyperelastic version of J, deformation theory, s is the Kirchhofl stress
deviator, and f(©®) is a smooth transition function equal to unity in the total loading
range 0 € @ < ©,, equal to zero in the total unloading range ©, < © < n and decreasing
monotonically in the transition regime @, £ @ < O, such that the potential W(%) is con-
tinuously differentiable and strictly convex. The reader is referred to the paper cited above
for more details concerning the theory and to the paper by Tvergauard er af, (1981) for the
specifications which have also been used in the present computations. By inverting the
relationship (47), the stiffnesss moduli L are obtained, and then the moduli € and the value
of U can be found from (7).

Once the elastic constants, uniaxial KirchhofT stress/logarithmic strain curve and the
(stress-dependent) transition function have been specified, the potential W becomes a
function of ¥ and of the current Cauchy stress o only. The compliances at finite strain can
be convenicntly determined by using the “principal axes technique™ [cf. Hill (1970, 1978)].
Similarly, it is convenicnt to begin computations of the last term (cqual to €+ F) in the
second-order constitutive equation (9) by assuming first the rotating triad a, of the principal
directions of o as a refercnce basis. For this purpose, once the first-order solution has been
found and the principal Cauchy stress rates 4, are known, the quantitics

tIn our calculations, a slightly different M° was actually determined for a hyperelastic solid, but the
difference can have no appreciable effect on the present results.
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. ¢ (¢W\ . _D,/(t.o +60=D,(t.0,
D”[::cun\t ( T >O'r T ! g I( ) (48)
éo, °t, ot
can be determinedt and substituted into the equation
LoD+ LoDy = (1)), =0, 49)

in order to compute components of L.- D on the triad a,. It is emphasized that the product,
contrary to L itself., is independent of the second-order rates (cf. the comments on eqn (9)) ;
in particular, LD = (¥) |p-come . The components of L+ D on a fixed reference basis can
then be expressed in terms of the current spin @ of the triad a, which can readily be found
from the equation

- \% -
0, —W,, =d,/(6,—0a,) {(nosum)., r#s, o, #0,. (50)

where w is the material spin and the components refer to a fixed triad which coincides
momentarily with a,. Transformation to variables (S. F) can be deduced from the bridging
cquation (7) and its time derivative. The resulting formulae are rather lengthy but are
obtained in u straightforward manner and hence need not be given here in detail.

Finite element discretization

A homogencous rectangular specimen subjected to plane strain tension is considered.
Stundard boundary conditions (given normal velocitics and zero shear tractions at the
ends and zero tractions on lateral boundaries) are adopted ; the additional restriction to
deformations symmetric about the mid-plances allows numerical analysis of only one quad-
rant of the specinmen. The quadrant is assumed to consist of 48 x 16 quadrilaterals, cach
made up of four constant-strain triangular clements. The updated Lagrangian description is
used, and at cach time step the triangles are formed by the two diagonals of the deformed
quadrilateral so that the clements are well suited to accommodate nearly isochoric defor-
mitions (Nagtegaal er «f., 1974). The diagonals have been appropriately oriented to
accommodate expected shear band formation (Tvergaard ez al., 1981). Calculations have
been performed by using the algorithm described in Section 4 which has been implemented
into the finite clement code developed by K. Thermann.

Results

(i) Smooth hardening law. The calculations are intended to complement the numerical
study of flow localization under plane strain tension by Tvergaard er af. (1981), where
initial geometric inhomogeneities have been assumed, with an analysis of deformation of
the initially perfect specimen. Material parameters are taken to be the same, e.g. the power
hardening law with an exponent 0.1 is assumed. the initial aspect ratio /y/h, (length/
thickness) is also taken as 3, and a similar non-uniform grid is employed with the initial
angle between the diagonals and the tensile axis in the necking region equal to 54.4".

Contrary to the case with imperfections, the deformation is here initially uniform
and necking starts at a bifurcation point. This takes place at a relative end-displacement
u/l, = 0.1405 when the tangent stiffness matrix corresponding to uniform straining, (K.
ceases to be positive definite. The respective theoretical value for a continuum is 0.1402.1 Tt
can be shown [cf. Petryk (1989), Section 8] that the inequality (6) is satisfied for the assumt.d
material model up to this critical point so that Theorem 3 applies. As soon as [K°] has
become indefinite, the computer program has automatically found another velocity solution
corresponding to necking initiation and left the (unstable) fundamental path, in full agree-
ment with the theory. Further deformations take place at a positive definite tangent stiffness

+ In our computations we have used an analytic expression in which the only time derivatives approximated
by a differential quotient arc those of £(©) and of /() at fixed ©.

1+ With the slight degree of compressibility of the material neglected, the bifurcation point is found at 0.1407
from Hnll and Hutchinson’s (1975) analysis for an incompressible solid.
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Fig. |. The smallest eigenvalue of the tangent stiffness matrix versus relative end-displacement in
the calculation of plane strain tension of an initially perfect specimen for the power hardening law.

(a)

(b)

Fig. 2. Current distribution of maximum principal strain-rate (normalized by end-velocity/initial
length) for the power hardening law. (a) at w/l, = 0.192, (b) at u/l, = 0.196.

matrix [K],} as illustrated in Fig. 1, although definite decrease of the smallest eigenvalue
of [K] can be observed in correlation with concentration of the deformation rate in the
central elements at lateral surfaces and in shear bands propagating from these clements
(Fig. 2). In passing, it may be remarked that shear bands can develop at positive definite
[K] so long as stability of equilibrium is maintained. In Fig. 3 the deformed mesh (obtained
by symmetric reflections of that actually computed for onc quadrant) is shown at
ufly = 0.192 and u/l, = 0.220, while the respective distributions of the maximum principal
logarithmic strain are given in Fig. 4. In comparison with the results for imperfect specimens
(Tvergaard et al., 1981), the shear band pattern becomes visible at clearly larger elongations.

t Since the effect of partial unloading on the constitutive potential is neglected in the material model, the
inequality (6) is not satisfied along the secondary path and spurious bifurcations at positive definite [K] are not
excluded. 1t should also be mentioned that a kind of hourglass instability has been detected between the partially
unloaded and fully loaded zones but this appears to have no visible influence on the mesh deformation.
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Fig. 3. Deformed finite element mesh at two stages of the deformation for the power hardening law.
() widy = 0192, (b) wily, = 0.220.

(a)

(b}

Fig. 4. Distribution of maximum principal logarithmic strain for the power hardening law. (a) at
wl, = 0.192, (b) at u/l, = 0.220.

This may be attributed to imperfection sensitivity (the onsct of unloading in an imperfect
specimen has been reported at u/f, = 0.123 in contrast to 0.140 in the present case), although
the use of a different computational algorithm might also have an influence in the numerical
results. An interesting deformation pattern in the central part of the specimen in Fig. 4b
appears to be related to instability of uniform deformation at the level of a material element.

(it) Piccewise-linear hardening law. To illustrate the possibility of calculating bifur-
cations induced by a discontinuous change of the tangent modulus (which relates the right-
hand rates of the equivalent stress and strain), a relationship between KirchhofT stress t
and logarithmic strain ¢ at uniaxial monotonic tension is taken in the form
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Fig. 5. Normalized load (T, = t,h,) versus end-displacement at uniform plane strain tension for
two versions of the piccewise-linear hardening law. The broken lines indicate the initial slopes for
secondary post-bifurcation paths for = 0.8 and H = 0.2.

t./E+(t—1,)/(2t,) for 1, <t < 141,
¢= { ' ' (51)

t,/E+024(t—1.41,)/(Hr,) for l4r, <

where 7, denotes the initial yield stress, £ = 500z, is the Young modulus, and Hrt, is the
constant hardening modulus at strain ¢ > 0.202. Two values of H have been examined :
H = 0.8 and 0.2. The respective variations of normalized load versus relative end-dis-
placcment at uniform plane strain tension are shown in Fig. 5. All other parameters
characterizing the material response at a yicld-surface vertex are taken to be the same as in
the previous example (op. cit.). The uniform (48 x 16) mesh is employed throughout a
quadrant of the specimen whose initial aspect ratio [y/h, is taken again as 3.

No bifurcation takes place up to the load peak at w/ly = 0.192 beyond which the
tangent stiffness matrix corresponding to uniform straining becomes abruptly indefinite for
the values of /1 examined. Accordingly, the fundamental path has not been followed further

D@

(b)
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Fig. 6. Distribution of maximum principal strain-rate in the bifurcation solutions for the piecewise-
lincar hardening law. (a) #/ = 0.8, (b) H =0.2.
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by the computer program. Immediately beyond the load peak secondary paths are initiated
with velocity fields which have been selected automatically by the minimization procedure.
This has created no numerical difficulty (except that more iterations were needed to
approach the minimum point), also for H = 0.2 when at the starting point of minimization
(t.c. for the fundamental velocity field) 21 diagonal elements of the factorized tangent
stiffness matrix were negative from a total number of 3119 degrees of freedom in the
examined quadrant. The respective initial slopes of secondary load end-displacements
curves are indicated in Fig. 5 by broken lines. The strain rate distribution at the instant of
biturcation tor H = 0.8 (cf. Fig. 6a) resembles closely the incipient necking mode for the
smooth hardening taw. At the bifurcation point for H = 0.2 (Fig. 6b) a shear band mode
is clearly activated.

{chnowledgernent —This paper was written when H.P. stayed at the Department of Mechanical Engineering,
Dortmund Unnersity. as a Fellow of the Alexander von Humboldt Foundation. The support of the AvH
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APPENDIX

Proof of Theorem 1. Consider the quantity
I(¥) EJ Uy dv = 1Q0,(r, (Al)
v

defined for all ¥e R". By (4) and the assumed continuity and homogeneity of the constitutive relationship, the
function /(*) is continuous, continuously differentiable and positively homogeneous of degree two.
Let || denote a norm in R, for instance. let |¥] = (r,0,) "%, Let ¥€ ¥ be a non-zero fixed vector. Every e ¥~

can be expressed as
V=" 4+3w*, where Ww*eW, |W* =1, y=|-¥] (A2)
On substituting (A1) and (A2) into (20) and rearranging with the help of the homogeneity of I, we obtain
M
JE) = I +y%*) - 3 P,
2=
M
=P U+ W) = 1) + 1)~ T P (o] +7w?). (A3)
2wl
As a continuously differentiable function, 7 is Lipschitz continuous in any ball, so that there is a constant C such
that
v +9) 1% < Cl¥| il |9 <1, W <L
Consequently,
Iw+¥)—H(w) 2 =CJ¥| it Jvl <, |w <1 (Ad)

From (A3). (A4) and homogeneity of a norm it follows that for y > |¥°] we have

M M
J) 2 r’/(»‘v')-(CW"H > P.nr:)v— Y A
2] z=|
2y H(Ww*)-yA—B, A,B=const; (AS)

the last estimation is obvious since w?are uniformly bounded.

An infimum of /(w*) on the sphere [W*] = | must be reached at some minimum point since the space ¥ is
finite-dimensional and 7 is continuous. The minimum value must be positive, by the assumed directional stability
of equilibrium, so that /(w*) > {u > 0, where p is defined by (45). On substituting this into (A5) we arrive finally
at the result that J(V) - + 2 when the distance y = |¥ =] incrcases to infinity while e ¥,

It remains to apply the known argument to complete the proof. From the final property of J(¥) we obtain
that J(¥) > J(¥) if ¥e ¥ and |¥ —¥°] > ¢, where ¢ is a sufficiently large number. Since J is continuous, it follows
that the absolute minimum of J(¥) in ¥ is attained at some ¥ such that |§ —#°] < ¢. Since J is continuously
differentiable, the stationarity condition (19) must be satisfied at a minimum point, so that the minimizer represents
a solution to (14). The theorem has been proven.



